您好, 欢迎来到 !    登录 | 注册 | | 设为首页 | 收藏本站

Java中的稀疏矩阵/数组

Java中的稀疏矩阵/数组

使用散列图构建的稀疏数组对于频繁读取的数据效率很低。最有效的实现方式是使用Trie,该Trie允许访问分布有段的单个向量。

Trie可以通过仅执行只读两个数组索引来获取元素存储的有效位置,或知道基础存储中是否不存在元素,从而计算表中是否存在元素。

它也可以为稀疏数组的认值在后备存储中提供认位置,因此你不需要对返回的索引进行任何测试,因为Trie保证所有可能的源索引都将至少映射到认值在后备存储中的位置(你经常会在其中存储零,空字符串或空对象)。

存在支持快速更新Tries的实现,并通过一个“ compact()”操作在多个操作结束时优化后备存储的大小。尝试比哈希映射要快得多,因为它们不需要任何复杂的哈希函数,并且不需要处理读取冲突(对于哈希映射,读取和写入都具有冲突,这需要循环以跳至下一个候选职位,并对其进行测试以比较有效来源索引…)

另外,Java Hashmaps只能在对象上建立索引,并且为每个散列的源索引创建一个Integer对象(每次读取都需要创建该对象,而不仅仅是写入)在内存操作方面是昂贵的,因为它强调了垃圾收集器。

我真的希望JRE包括IntegerTrieMap 作为慢速HashMap 认实现或LongTrieMap 作为慢速HashMap 认实现…但这是仍然不是这样。

你可能想知道什么是特里?

它只是一小部分整数数组(比矩阵的整个坐标范围小),可以将坐标映射到向量中的整数位置。

例如,假设你想要一个1024 * 1024矩阵,其中仅包含一些非零值。与其将矩阵存储在包含1024 * 1024个元素(超过100万个)的数组中,不如将其拆分为大小为16 * 16的子范围,而只需要64 * 64个这样的子范围即可。

在这种情况下,Trie索引将仅包含64 * 64的整数(4096),并且将至少有16 * 16的数据元素(包含认零或稀疏矩阵中最常见的子范围)。

并且用于存储值的向量对于彼此相等的子范围将仅包含1个副本(其中大多数为零,它们将由相同的子范围表示)。

因此matrix[i][j],你可以使用类似以下语法,而不是使用类似的语法:

trie.values[trie.subrangePositions[(i & ~15) + (j >> 4)] +
            ((i & 15) << 4) + (j & 15)]

使用trie对象的访问方法将可以更方便地处理它。

这是一个内置在注释类中的示例(我希望它可以编译成OK(简化);如果有要纠正的错误,请通知我):

/**
 * Implement a sparse matrix. Currently limited to a static size
 * (<code>SIZE_I</code>, <code>SIZE_I</code>).
 */
public class DoubleTrie {

    /* Matrix logical options */        
    public static final int SIZE_I = 1024;
    public static final int SIZE_J = 1024;
    public static final double DEFAULT_VALUE = 0.0;

    /* Internal splitting options */
    private static final int SUBRANGEBITS_I = 4;
    private static final int SUBRANGEBITS_J = 4;

    /* Internal derived splitting constants */
    private static final int SUBRANGE_I =
        1 << SUBRANGEBITS_I;
    private static final int SUBRANGE_J =
        1 << SUBRANGEBITS_J;
    private static final int SUBRANGEMASK_I =
        SUBRANGE_I - 1;
    private static final int SUBRANGEMASK_J =
        SUBRANGE_J - 1;
    private static final int SUBRANGE_POSITIONS =
        SUBRANGE_I * SUBRANGE_J;

    /* Internal derived default values for constructors */
    private static final int SUBRANGES_I =
        (SIZE_I + SUBRANGE_I - 1) / SUBRANGE_I;
    private static final int SUBRANGES_J =
        (SIZE_J + SUBRANGE_J - 1) / SUBRANGE_J;
    private static final int SUBRANGES =
        SUBRANGES_I * SUBRANGES_J;
    private static final int DEFAULT_POSITIONS[] =
        new int[SUBRANGES](0);
    private static final double DEFAULT_VALUES[] =
        new double[SUBRANGE_POSITIONS](DEFAULT_VALUE);

    /* Internal fast computations of the splitting subrange and offset. */
    private static final int subrangeOf(
            final int i, final int j) {
        return (i >> SUBRANGEBITS_I) * SUBRANGE_J +
               (j >> SUBRANGEBITS_J);
    }
    private static final int positionOffsetOf(
            final int i, final int j) {
        return (i & SUBRANGEMASK_I) * MAX_J +
               (j & SUBRANGEMASK_J);
    }

    /**
     * Utility missing in java.lang.System for arrays of comparable
     * component types, including all native types like double here.
     */
    public static final int arraycompare(
            final double[] values1, final int position1,
            final double[] values2, final int position2,
            final int length) {
        if (position1 >= 0 && position2 >= 0 && length >= 0) {
            while (length-- > 0) {
                double value1, value2;
                if ((value1 = values1[position1 + length]) !=
                    (value2 = values2[position2 + length])) {
                    /* Note: NaN values are different from everything including
                     * all Nan values; they are are also neigher lower than nor
                     * greater than everything including NaN. Note that the two
                     * infinite values, as well as denormal values, are exactly
                     * ordered and comparable with <, <=, ==, >=, >=, !=. Note
                     * that in comments below, infinite is considered "defined".
                     */
                    if (value1 < value2)
                        return -1;        /* defined < defined. */
                    if (value1 > value2)
                        return 1;         /* defined > defined. */
                    if (value1 == value2)
                        return 0;         /* defined == defined. */
                    /* One or both are NaN. */
                    if (value1 == value1) /* Is not a NaN? */
                        return -1;        /* defined < NaN. */
                    if (value2 == value2) /* Is not a NaN? */
                        return 1;         /* NaN > defined. */
                    /* Otherwise, both are NaN: check their precise bits in
                     * range 0x7FF0000000000001L..0x7FFFFFFFFFFFFFFFL
                     * including the canonical 0x7FF8000000000000L, or in
                     * range 0xFFF0000000000001L..0xFFFFFFFFFFFFFFFFL.
                     * Needed for sort stability only (NaNs are otherwise
                     * unordered).
                     */
                    long raw1, raw2;
                    if ((raw1 = Double.doubleToRawLongBits(value1)) !=
                        (raw2 = Double.doubleToRawLongBits(value2)))
                        return raw1 < raw2 ? -1 : 1;
                    /* Otherwise the NaN are strictly equal, continue. */
                }
            }
            return 0;
        }
        throw new Arrayindexoutofboundsexception(
                "The positions and length can't be negative");
    }

    /**
     * Utility shortcut for comparing ranges in the same array.
     */
    public static final int arraycompare(
            final double[] values,
            final int position1, final int position2,
            final int length) {
        return arraycompare(values, position1, values, position2, length);
    }

    /**
     * Utility missing in java.lang.System for arrays of equalizable
     * component types, including all native types like double here.
     */ 
    public static final boolean arrayequals(
            final double[] values1, final int position1,
            final double[] values2, final int position2,
            final int length) {
        return arraycompare(values1, position1, values2, position2, length) ==
            0;
    }

    /**
     * Utility shortcut for identifying ranges in the same array.
     */
    public static final boolean arrayequals(
            final double[] values,
            final int position1, final int position2,
            final int length) {
        return arrayequals(values, position1, values, position2, length);
    }

    /**
     * Utility shortcut for copying ranges in the same array.
     */
    public static final void arraycopy(
            final double[] values,
            final int srcPosition, final int dstPosition,
            final int length) {
        arraycopy(values, srcPosition, values, dstPosition, length);
    }

    /**
     * Utility shortcut for resizing an array, preserving values at start.
     */
    public static final double[] arraysetlength(
            double[] values,
            final int newLength) {
        final int oldLength =
            values.length < newLength ? values.length : newLength;
        System.arraycopy(values, 0, values = new double[newLength], 0,
            oldLength);
        return values;
    }

    /* Internal instance members. */
    private double values[];
    private int subrangePositions[];
    private bool isSharedValues;
    private bool isSharedSubrangePositions;

    /* Internal method. */
    private final reset(
            final double[] values,
            final int[] subrangePositions) {
        this.isSharedValues =
            (this.values = values) == DEFAULT_VALUES;
        this.isSharedsubrangePositions =
            (this.subrangePositions = subrangePositions) ==
                DEFAULT_POSITIONS;
    }

    /**
     * Reset the matrix to fill it with the same initial value.
     *
     * @param initialValue  The value to set in all cell positions.
     */
    public reset(final double initialValue = DEFAULT_VALUE) {
        reset(
            (initialValue == DEFAULT_VALUE) ? DEFAULT_VALUES :
                new double[SUBRANGE_POSITIONS](initialValue),
            DEFAULT_POSITIONS);
    }

    /**
     * Default constructor, using single default value.
     *
     * @param initialValue  Alternate default value to initialize all
     *                      positions in the matrix.
     */
    public DoubleTrie(final double initialValue = DEFAULT_VALUE) {
        this.reset(initialValue);
    }

    /**
     * This is a useful preinitialized instance containing the
     * DEFAULT_VALUE in all cells.
     */
    public static DoubleTrie DEFAULT_INSTANCE = new DoubleTrie();

    /**
     * Copy constructor. Note that the source trie may be immutable
     * or not; but this constructor will create a new mutable trie
     * even if the new trie initially shares some storage with its
     * source when that source also uses shared storage.
     */
    public DoubleTrie(final DoubleTrie source) {
        this.values = (this.isSharedValues =
            source.isSharedValues) ?
            source.values :
            source.values.clone();
        this.subrangePositions = (this.isSharedSubrangePositions =
            source.isSharedSubrangePositions) ?
            source.subrangePositions :
            source.subrangePositions.clone());
    }

    /**
     * Fast indexed getter.
     *
     * @param i  Row of position to set in the matrix.
     * @param j  Column of position to set in the matrix.
     * @return   The value stored in matrix at that position.
     */
    public double getAt(final int i, final int j) {
        return values[subrangePositions[subrangeOf(i, j)] +
                      positionOffsetOf(i, j)];
    }

    /**
     * Fast indexed setter.
     *
     * @param i      Row of position to set in the sparsed matrix.
     * @param j      Column of position to set in the sparsed matrix.
     * @param value  The value to set at this position.
     * @return       The passed value.
     * Note: this does not compact the sparsed matric after setting.
     * @see compact(void)
     */
    public double setAt(final int i, final int i, final double value) {
       final int subrange       = subrangeOf(i, j);
       final int positionOffset = positionOffsetOf(i, j);
       // Fast check to see if the assignment will change something.
       int subrangePosition, valuePosition;
       if (Double.compare(
               values[valuePosition =
                   (subrangePosition = subrangePositions[subrange]) +
                   positionOffset],
               value) != 0) {
               /* So we'll need to perform an effective assignment in values.
                * Check if the current subrange to assign is shared of not.
                * Note that we also include the DEFAULT_VALUES which may be
                * shared by several other (not tested) trie instances,
                * including those instanciated by the copy contructor. */
               if (isSharedValues) {
                   values = values.clone();
                   isSharedValues = false;
               }
               /* Scan all other subranges to check if the position in values
                * to assign is shared by another subrange. */
               for (int otherSubrange = subrangePositions.length;
                       --otherSubrange >= 0; ) {
                   if (otherSubrange != subrange)
                       continue; /* Ignore the target subrange. */
                   /* Note: the following test of range is safe with future
                    * interleaving of common subranges (TODO in compact()),
                    * even though, for Now, subranges are sharing positions
                    * only between their common start and end position, so we
                    * Could as well only perform the simpler test <code>
                    * (otherSubrangePosition == subrangePosition)</code>,
                    * instead of testing the two bounds of the positions
                    * interval of the other subrange. */
                   int otherSubrangePosition;
                   if ((otherSubrangePosition =
                           subrangePositions[otherSubrange]) >=
                           valuePosition &&
                           otherSubrangePosition + SUBRANGE_POSITIONS <
                           valuePosition) {
                       /* The target position is shared by some other
                        * subrange, we need to make it unique by cloning the
                        * subrange to a larger values vector, copying all the
                        * current subrange values at end of the new vector,
                        * before assigning the new value. This will require
                        * changing the position of the current subrange, but
                        * before doing that, we first need to check if the
                        * subrangePositions array itself is also shared
                        * between instances (including the DEFAULT_POSITIONS
                        * that should be preserved, and possible arrays
                        * shared by an external factory contructor whose
                        * source trie was declared immutable in a derived
                        * class). */
                       if (isSharedSubrangePositions) {
                           subrangePositions = subrangePositions.clone();
                           isSharedSubrangePositions = false;
                       }
                       /* TODO: no attempt is made to allocate less than a
                        * fully independant subrange, using possible
                        * interleaving: this would require scanning all
                        * other existing values to find a match for the
                        * modified subrange of values; but this Could
                        * potentially leave positions (in the current subrange
                        * of values) unreferenced by any subrange, after the
                        * change of position for the current subrange. This
                        * scanning Could be prohibitively long for each
                        * assignement, and for Now it's assumed that compact()
                        * will be used later, after those assignements. */
                       values = setlengh(
                           values,
                           (subrangePositions[subrange] =
                            subrangePositions = values.length) +
                           SUBRANGE_POSITIONS);
                       valuePosition = subrangePositions + positionOffset;
                       break;
                   }
               }
               /* Now perform the effective assignment of the value. */
               values[valuePosition] = value;
           }
       }
       return value;
    }

    /**
     * Compact the storage of common subranges.
     * TODO: This is a simple implementation without interleaving, which
     * would offer a better data compression. However, interleaving with its
     * O(N²) complexity where N is the total length of values, should
     * be attempted only after this basic compression whose complexity is
     * O(n²) with n being SUBRANGE_POSITIIONS times smaller than N.
     */
    public void compact() {
        final int oldValuesLength = values.length;
        int newValuesLength = 0;
        for (int oldPosition = 0;
                 oldPosition < oldValuesLength;
                 oldPosition += SUBRANGE_POSITIONS) {
            int oldPosition = positions[subrange];
            bool commonSubrange = false;
            /* Scan values for possible common subranges. */
            for (int newPosition = newValuesLength;
                    (newPosition -= SUBRANGE_POSITIONS) >= 0; )
                if (arrayequals(values, newPosition, oldPosition,
                        SUBRANGE_POSITIONS)) {
                    commonSubrange = true;
                    /* Update the subrangePositions|] with all matching
                     * positions from oldPosition to newPosition. There may
                     * be several index to change, if the trie has already
                     * been compacted() before, and later reassigned. */
                    for (subrange = subrangePositions.length;
                         --subrange >= 0; )
                        if (subrangePositions[subrange] == oldPosition)
                            subrangePositions[subrange] = newPosition;
                    break;
                }
            if (!commonSubrange) {
                /* Move down the non-common values, if some prevIoUs
                 * subranges have been compressed when they were common.
                 */
                if (!commonSubrange && oldPosition != newValuesLength) {
                    arraycopy(values, oldPosition, newValuesLength,
                        SUBRANGE_POSITIONS);
                    /* Advance compressed values to preserve these new ones. */
                    newValuesLength += SUBRANGE_POSITIONS;
                }
            }
        }
        /* Check the number of compressed values. */
        if (newValuesLength < oldValuesLength) {
            values = values.arraysetlength(newValuesLength);
            isSharedValues = false;
        }
    }

}

注意:此代码不完整,因为它只能处理单个矩阵大小,并且其压缩器仅限于仅检测公共子范围而不进行交错。

另外,代码不会根据矩阵大小确定将矩阵划分为子范围(用于x或y坐标)的最佳宽度或高度。它仅使用相同的静态子范围大小16(对于两个坐标),但可以方便地使用其他任何2的小数幂(但是如果不使用2的幂,则会降低int indexOf(int, int)和int offsetOf(int, int)内部方法的速度),对于两个坐标和向上理想情况下,该compact()方法应该能够确定最佳的拟合尺寸。

如果这些分裂子区域的大小可以改变,那么将有必要添加实例成员对这些小范围的大小,而不是静态的SUBRANGE_POSITIONS,并且使静态方法int subrangeOf(int i, int j)int positionOffsetOf(int i, int j)成非静态的; 和初始化数组DEFAULT_POSITIONS,DEFAULT_VALUES则需要将其删除或重新定义。

如果要支持交织,则基本上是从将现有值分成两个大小相同的值开始(两者都是最小子范围大小的倍数,第一个子集可能比第二个子集多一个子范围),以及你将在所有连续位置扫描较大的一个,以找到匹配的交错;那么你将尝试匹配这些值。然后,将子集分成两半(也是最小子范围大小的倍数),以递归循环,然后再次扫描以匹配这些子集(这会将子集的数量乘以2:与当前值的大小相比,subrangePositions索引的大小值得该值,以查看其是否提供有效的压缩(如果没有,则在此处停止:你直接从交错压缩过程中找到了最佳子范围大小)。在这种情况下; 在压实期间,子范围的大小将是可变的。

但是这段代码显示了如何分配非零值并data为其他(非零)子范围重新分配数组,然后当存在重复项时如何优化(compact()使用该setAt(int i, int j, double value)方法执行分配后)此数据的存储可以在数据中统一的子范围,并在subrangePositions数组中的同一位置重新索引。

无论如何,特里的所有原理都在这里实现:

使用单个向量而不是双索引数组(每个数组单独分配)来表示矩阵总是更快(并且在内存中更紧凑,意味着更好的局部性)。改进在double getAt(int, int)方法中可见!

你节省了大量空间,但是在分配值时,可能需要一些时间重新分配新的子范围。因此,子范围不应太小,否则重新设置对于设置矩阵而言会过于频繁。

通过检测公共子范围,可以将初始的大矩阵自动转换为更紧凑的矩阵。然后,典型的实现将包含上述方法compact()。但是,如果get()访问非常快而set()相当快,则如果有很多要压缩的常见子范围(例如,用自身减去大型非稀疏随机填充矩阵时),compact()可能会非常慢。 ,或将其乘以零:在这种情况下,通过实例化一个新的并丢弃旧的来重置Trie会更简单,更快。

公用子范围在数据中使用公用存储,因此此共享数据必须是只读的。如果必须更改单个值而不更改矩阵的其余部分,则必须首先确保在subrangePositions索引中仅对其进行一次引用。否则,你将需要在values向量的任意位置(通常在末尾)分配一个新的子范围,然后将该新子范围的位置存储到subrangePositions索引中。

请注意,通用Colt库虽然很好,但在处理稀疏矩阵时却不如它好,因为它使用了哈希(或行压缩)技术,尽管它是一个出色的优化,这既是节省空间和节省时间的,特别是对于最常见的getAt()操作。

即使是此处描述的setAt()操作也可以节省大量时间(此处实现的方式,即在设置后无需自动压缩,仍然可以根据需求和估计时间来实现,其中压缩仍将节省大量存储空间时间价格):节省的时间与子范围内的单元格数量成正比,而节省的空间则与每个子范围内的单元格数量成反比。如果要使用子范围大小,则最好妥协,例如每个子范围的像元数是2D矩阵中像元总数的平方根(在使用3D矩阵时,它将是立方根)。

在Colt稀疏矩阵实现中使用的哈希技术的不便之处在于,它们增加了很多存储开销,并且由于可能的冲突而导致访问时间变慢。尝试可以避免所有冲突,然后可以保证在最坏的情况下将线性O(n)时间节省为O(1)时间,其中(n)是可能发生冲突的次数(在稀疏矩阵的情况下,可能是对于非稀疏(即完整矩阵),最大为矩阵中非认值像元的数量,即最大为矩阵大小的总数乘以与哈希填充因子成比例的因子)。

在Colt中使用的RC(行压缩)技术距离Tries较近,但这是另一种代价,这里使用的压缩技术对最频繁的只读get()操作具有非常慢的访问时间,并且非常慢setAt()操作的压缩。此外,所使用的压缩不是正交的,这与Tries的这种保留正交性的表示方式不同。对于相关的查看操作(例如跨步,换位(基于整数循环模块化操作的跨步操作),细分(通常包括子视图,包括子视图)),也将尝试保留这种正交性。

我只是希望柯尔特将来会更新,以使用Tries实现另一种实现(即TrieSparseMatrix而不是HashSparseMatrix和RCSparseMatrix)。这些想法在本文中。

Trove实现(基于int-> int映射)也基于类似于Colt的HashedSparseMatrix的哈希技术,即它们具有相同的不便之处。尝试会快很多,而且会占用适度的额外空间(但是可以对最终的矩阵/ trie使用最终的compact()ion操作,在延迟的时间内优化并变得比Trove和Colt更好)。

注意:此Trie实现绑定到特定的本机类型(此处为double)。这是自愿的,因为使用装箱类型的通用实现具有巨大的空间开销(并且访问时间要慢得多)。在这里,它仅使用双精度的原生一维数组,而不是通用Vector。但是,当然也可以为Tries派生通用实现…不幸的是,Java仍然不允许编写具有本机类型所有优点的真正通用类,除非编写多个实现(对于通用Object类型或每个通用类型)。本机类型),并通过类型工厂为所有这些操作提供服务。该语言应该能够自动实例化本机实现并自动构建工厂(目前,即使在Java 7中也不是这种情况,这是在其中。

java 2022/1/1 18:21:47 有443人围观

撰写回答


你尚未登录,登录后可以

和开发者交流问题的细节

关注并接收问题和回答的更新提醒

参与内容的编辑和改进,让解决方法与时俱进

请先登录

推荐问题


联系我
置顶